Fractal Color Image Compression

Dr. Eman A. Al-Hilo
Kufa University/College of Medicine/Iraq
emanalhilo@yahoo.com

Dr. Loay E. George
Baghdad University/College of Science/Iraq
loayedwar57@yahoo.com

Dr. Ali A. Al-Zuky
Al-Mustansiriyah University/College of Science
dralialzuky@yahoo.com

Abstract

In this paper, the fractal compression technique proposed by Jacquin is investigated for 24 bits/pixel color image with some improvements introduced on the IFS matching stage. One of them is using a stopping search condition (ε) when monitoring the minimum matching error. This will reduce the required long fractal coding time. The other is using the domain block position index (PosI) instead of the coordinates (x_d,y_d), to encode the position of best matched domain block. The data of the color component (R,G,B) are transformed to (Y,U,V) components, to take the advantage of the existing spectral correlation to gain more compression. Also the low spatial resolution of the human vision systems to the chromatic components (U,V) was utilized to increase the compression ratio without making significant subjective distortion. The test attained trade-off results is PSNR (33.3) dB with CR (9.72) and encoding time (128.06) sec for Lena (256x256) image.